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ABSTRACT

Understanding the complex regulatory mechanisms of gene expres-
sion is crucial in molecular biology. Promoter regions, especially
core promoters, play a vital role in transcriptional regulation. Re-
cent studies have revealed the diversity and complexity of core pro-
moters, with various functional motifs contributing to their unique
characteristics. Transcriptional cofactors (COFs) mediate regula-
tory signals between enhancer regions and core promoters, influ-
encing gene expression. Leveraging deep learning, we developed a
novel model to predict COF preferences from DNA sequences, aim-
ing to uncover the underlying DNA motifs that shape COF-promoter
specificities. The results of the models demonstrated their effec-
tiveness in predicting TSSs (Transcription Start Site) and providing
insights into COF-promoter interactions. Deep learning methods
proved valuable in deciphering the complex interplay between DNA
sequences and transcriptional regulation. This research contributes
to our understanding of the relationship between DNA motifs and
gene expression activity.

Index Terms— Promoters, Cofactors, Deep Learning, Promoter
Motifs

1. INTRODUCTION

Deciphering the intricate regulatory mechanisms governing gene
expression is a fundamental pursuit in molecular biology[1]. Central
to this endeavor are promoter regions, which play a crucial role in
orchestrating the precise activation or repression of genes. Core pro-
moters, typically located upstream (60-120 base pairs) of the TSS,
serve as essential platforms for the assembly of transcription factors
and other auxiliary factors (e.g. cofactors), enabling the initiation
of transcription and subsequent regulation of gene expression[2].
Unraveling the structure-function relationships of Human promoters
is of particular significance due to their inherent complexity and
diversity. The complexity may be attributed to the necessity of con-
trolling the expression of thousands of protein-coding genes using a
relatively small set of transcription factors[3]. The complexity and
diversity of human promoters are particularly striking, possibly due
to the need to control the expression of thousands of protein-coding
genes with a limited number of transcription factors[4]. Moreover,
the rapid evolution of primate promoters suggests weak selective
constraints and further contributes to the intricate and diverse nature
of human promoter structures[5]. Understanding the intricacies of
human promoters is not only crucial for deciphering gene regulatory
networks but also holds implications for studying genetic variants
associated with rare Mendelian diseases and somatic mutations in
cancer.

Previously, the core promoter was thought to be a universal
component, functioning in a similar manner across all protein-
coding genes[6]. However, there is now a growing belief that core
promoters consist of multiple short DNA elements and motifs, typ-
ically ranging from 5 to 15 bases in length[7]. This diversity in the
composition of core promoter regions leads to variations in their
structure and functionality, making each core promoter unique in
its characteristics[4]. Decades of research have identified various
functional sequence motifs within the core promoter that contribute
to its structure-function relationship[7]. The most well-known and
extensively studied motif is the TATA box, originally believed to be
universally present in RNA pol II core promoters[8]. However, with
the advent of genome-wide TSS detection techniques based on high-
throughput sequencing, it has become apparent that the structure of
the core promoter is highly diverse and complex, lacking universal
core promoter elements[9]. Only around 17% of eukaryotic core
promoters are estimated to contain the TATA box, highlighting the
tremendous heterogeneity within this regulatory region[10].

In the dynamic regulation of gene expression, COFs play a
pivotal role, mediating the transmission of regulatory signals from
enhancer regions to core promoters[11]. These COFs act as crucial
intermediaries, influencing transcriptional activation and gene ex-
pression. In a study by Vanja Haberle et al. in 2019, the authors
demonstrated differential activation of core promoters by different
COFs, indicating distinct regulatory preferences or compatibility be-
tween COFs and specific types of core promoters[12]. This interplay
between COFs and core promoters shapes the transcriptional land-
scape, facilitating the specific activation of target genes, alternative
promoter usage, and the selection of distinct TSS[12]. Importantly,
these findings establish the existence of distinct COF-core promoter
compatibilities not only in Drosophila cells but also in Human cells,
suggesting the potential conservation of these regulatory principles
across species[12]. By unraveling the relationship and specificity
between COFs and core promoters, these studies shed light on the
common dependencies and specificities shared between COFs and
core promoters in driving gene expression.

In recent years, sequence-based approaches leveraging deep
learning have shown promise in promoter prediction. Deep con-
volutional neural networks (CNNs) have demonstrated exceptional
performance in various fields, including omics data[2][13][14].
Deep learning models have been successfully applied in biological
problems, such as branch point selection, DNA sequence quan-
tification etc. [2]. For instance, In 2017, Umarov and Solovyev
published CNNProm for promoter recognition, achieving high accu-
racy in discriminating short promoter sequences[15]. Then, in 2019,
Umarov et al., improved the CNNProm and published CNNProm2
that works well with longer promoter sequences and predicts the



TSS positions also[16]. Besides that, in 2022, Almedida et al.
published a deep-learning model called DeepSTARR to predict en-
hancer activity directly from the DNA sequence[17]. DeepSTARR
managed to learn relevant transcription factor motifs and higher-
order syntax rules, including the impact of motif-flanking sequence
and inter-motif distances on enhancer activity[17]. These advance-
ments highlight the power of deep learning methods in deciphering
the intricate relationship between DNA motifs and gene expression
activity.

Although Haberle et al. hinted at specific preferences between
COF and promoters, how these specifities are encoded at the DNA
level remains unclear[12]. Here, we devleoped a novel deep Learn-
ing model to predict these preferences directly from promoters’
DNA sequence, hoping to identify the DNA motifs that shape
COF/Promoter specificities.

(a)

(b)

Fig. 1: Subfigure (a) shows negative (red) and positive (blue) length distribution of
each chromosome of the Fruit fly. On top of each bar the total number of each entry
indicated. Subfigure (b) shows the percentage distribution of each chromosome of the
fruit fly genome. Both graph is plotted based on provided .bed file entries for TSS
prediction.

2. MATERIALS AND METHOD

The construction of our model involved two primary components.
First, we aimed to demonstrate the model’s ability to accurately
predict TSS along the Drosophila genomes, using only DNA se-
quence. Subsequently, we developed the core model, which predicts
promoters’ transcriptional response to COF binding, thus unveiling
the relationship between promoter motifs COFs.

As mentioned earlier, IMP shared their experimental results
with our team. They conducted a COF-STAP-Seq based experi-
ment where each cofactor of interest was forcibly recruited next
to a collection of Core-Promoters (CPs). It’s important to clarify
that each cofactor was tested separately in individual assays. To
do this, they introduced two DNA pieces (plasmids) into the cells:
the first plasmid pool contained the core-promoters flanked with an
”UAS” recruiting sequence located just upstream, and the second
plasmid produced the cofactor of interest fused to a GAL4-DNA
binding domain. Upon transfection of these two plasmids, the
cofactor of interest was produced and recruited next to different
core-promoters, potentially triggering their transcription. By mea-
suring the transcription of the promoters in the presence of different
cofactors, we were able to assess their responsiveness. Each entry in
the dataset was associated with cofactor expression, which included
15 different cofactors, including a control cofactor (Green Fluo-
rescent Protein - GFP). The cofactors listed were p65, Nej p300,
Med25, Lpt, Med15, CG7154 Brd9, fs1h Brd4, trr, trx, gfzf, Chro,
CG15356 EMSY, Brd8, Mof, and the control GFP.

2.1. Data Preprocessing

At the outset, our analysis commenced by utilizing the .bed file pro-
vided by IMP. This file comprises 30,673 annotations for DNA
sequences containing TSSs within the genome of the fruit fly,
Drosophila melanogaster which were downloaded from the database
Flybase 1. The reference genome employed is Genome assembly Re-
lease 6 plus ISO1 MT 2 with the NCBI RefSeq ID: GCF 000001215.4.

To extract the corresponding DNA sequences, we parsed the
dm6 Fasta file based on the TSS starting coordinates provided in
the .bed file. By extending the sequences by +/- 124 bp from the
TSS position, we obtained sequence entries of 249 bp in length.
Each entry was assigned a unique ID and linked to its correspond-
ing chromosome location and coordinates. Furthermore, utilizing
the dm6 Fasta file, we obtained negative control sequences devoid
of any TSS. This process involved dividing the entire Drosophila
melanogaster genome into 249 bp bins. After eliminating any
overlapping regions among the extended TSSs, negative control se-
quences were randomly sampled. Consequently, we amassed a total
of 61,731 sample set for the TSS binary prediction model.

Regarding our second task’s data processing, we received ex-
perimental results from IMP in the form of a CSV file. This file
contained 72k Drosophila promoters, in response to the recruit-
ment of 14 different COFs associated with TSSs of the Drosophila
melanogaster genome. For this study, the CSV file was constructed
based on the Apr. 2006 assembly of the Drosophila melanogaster
genome (dm3, BDGP Release 5), which is the fruit fly genome
release in 2014.3

1https://flybase.org
2Drosophila melanogaster Aug. 2014, BDGP Release 6 + ISO1 MT/dm6
3https://hgdownload.soe.ucsc.edu/goldenPath/dm3/bigZips/



Similar to our previous approach, we extracted the relevant
sequences by parsing the dm3 Fasta file using the provided TSS
starting coordinates in the CSV file. Since the CSV file contained
both the starting and end sites, we parsed the fasta file using these
exact coordinates, resulting in sequences that were 134 bp in length.
Each entry was assigned a unique ID and associated with its respec-
tive chromosome location and coordinates.

PseudocountsK = ∀K ∈ {1, ..., n} .bK = min(bK > 0) (1)

LogcountsJ = ∀J ∈ {1, ..., n} .aj = log2(aj) (2)

NormCountsJ = ∀J ∈ {1, ..., n} .aj = log2(aj)−log2(GFP j)
(3)

Importantly, CPs have a basal activity in the absence of func-
tional COFs that need to be normalized out to infer COF/promoter
preferences. To do so, we used transcriptions levels upon recruit-
ment of the GFP protein, which has no impact on trasncription and
will be used as a control. For each COF, normalized CPs activity was
computed as log2((COFcounts+pseudocount)/(GFPcounts+
pseudocount)) (eq. 2,eq. 3 and eq. 1). Of note, pseudocount
were added to the data to avoid 0 (pseudocount = min(counts >
0))(eq.1).This approach ensured accurate determination of COF /
promoter preferences while effectively addressing issues related to
zero values and expression noise.

Fig. 2: Comparison of Chromosome Lengths in Drosophila melanogaster Genome. The
bar plot displays the lengths of chromosomes based on the analysis of the given cofactor
expression data. Each bar represents the length of a chromosome, and the corresponding
values are indicated on top of each bar. The plot provides insights into the relative
lengths of chromosomes.

At the end of the data processing, two methods were utilized
to prepare the data: one-hot encoding and data loader prepara-
tion. First, parsed data was loaded and then converted to NumPy
arrays.The data was divided into training, validation, and testing
sets based on the row indices. 80% Training, 10% Validation and
10% Test ratios are selected. One-hot encoding was performed to
convert the DNA sequence letters (”A,” ”C,” ”G,” and ”T”) into
categorical vectors. The codetable was created to map each letter to
a corresponding index. Finally, the data and labels were converted

to PyTorch tensors and sent to the specified device for computation.
The data was organized into TensorDatasets and DataLoader objects
for efficient batching during model training.

Similarly, for the cofactor model, the process involved loading
the data, selecting the rows with the chromosome identifiers, shuf-
fling the data, and dividing it into training and validation/testing sets(
80% Training, 10% Validation and 10% Test ratios). However, in
this case, a different subset of columns was chosen. One-hot en-
coding was again applied to convert the DNA sequence letters into
categorical vectors using the codetable. The labels were converted
to tensors of type float32, and the data and labels were sent to the
specified device. Lastly, the data was organized into TensorDatasets
and DataLoader objects for training, validation, and testing.

2.2. Data Analysis

In the .bed file, only canonical Drosophila chromosomes were in-
cluded (2L, 2R, 3L, 3R, 4, X) containing 30,674 TSS sequences,
corresponding to 19,578 unique genomic locations, as distinct gene
isoforms can share a similar TSS. After cleaning the file from some
duplicated sequences we ended up with 19578 sequences with a
present TSS. On the other hand, while we were creating control
sequences(negative TSS/ no TSS), since we have limited amount
of data, we decided to sample twice the number of corresponding
chromosome entries. In the end, we resulted with the distribution
that is shown in fig. 1. Each chromosome consisted of 2/3 sequences
without TSS and 1/3 sequences with TSS. In conclusion, we had
61731 entries for our data set that would be split for training, vali-
dating and testing the model. When the chart is examined on fig. 1,
the number of entries for each chromosome distribution is balanced
(except chromosome 4 and Y).

On the other hand, while creating the cofactor expression data
set, IMP provided us with an xlsx file that contained 72000 entries.
Parsing the data and extracting the important information resulted in
71592 entries. The entry distribution for each chromosome can be
seen at fig. 2. When we normalize the data, the distribution of the
values can be found in appendix. When we examined the mean like-
lihood expression of each cofactor throughout the data set as shown
in fig. 10, we can clearly see that GFP has the lowest likelihood to
be expressed. In addition to that, we can clearly see that the data
set records bigger expression for some of the cofactors such as gfzf
and trx. That could potentially cause the model to learn gfzf related
motifs better and non-MOF related motifs better.

2.3. Model Construction

2.3.1. TSS Binary Predictor Model Construction

As previously mentioned, in the first stage of our work we imple-
mented a binary prediction deep neural network architecture that,
granted a DNA sequence of size 249, predicts whether the sequence
contains a TSS or not. Thus, our model has to map the 249-bp-long
sequence to one value that corresponds to the binary prediction for
the TSS.

We based the implementation of our architecture on the state-
of-the-art DeepSTARR model as it seemed to be fitting our needs
for making accurate predictions based only on DNA sequences[17].
Additionally, the original DeepSTARR implementation is on Ten-
sorflow, but we decided to implement it ourselves in PyTorch. The
most important part of the network that we changed was the output,



Fig. 3: Mean Likelihood of Expression for Cofactors. The plot illustrates the average
likelihood of expression for each cofactor based on the dataset. Each bar represents the
mean likelihood of expression, with a higher bar indicating a higher average likelihood.
Data labels on top of each bar display the exact mean likelihood value. The plot provides
insights into the relative likelihoods of expression for different cofactors, contributing
to the understanding of their potential regulatory roles.

as DeepSTARR was made for a regression task whilst we used it
for a binary prediction. The details about our architecture are given
below:

Our architecture is consisted of 4 initial convolutional layers,
each followed by a batch normalization layer, a ReLU non-linearity
and a max-pooling layer. For all but the first one we also implement
a dropout layer after the corresponding max-pool. The convolutional
layers are used as feature extraction mechanisms as they manage to
identify underlying features of the sequence data. More specifically,
the first convolutional layers can extract local sequence features
such as TF motifs and then later ones can find even more complex
features like TF motif syntax. The sizes of the kernels and filters for
the convolutional and max-pooling layers are the same as those in
DeepSTARR, since it served as a great baseline for our experiments
and it also intuitively made sense as our input sequences were of
the same type and size. Adding some dropout layers as previously
mentioned, helped with the regularization of our network in order to
avoid very quick overfitting, especially since we didn’t have a lot of
data sequences( only 19,578 sequences that contains TSS).

Following the convolutional layers mentioned above and after
having extracted the important features from our data, we have the
classifier network part of our model. We flatten our feature ten-
sor that has been generated from the convolutional layers before
inputting it to the classifier. The classifier is basically made of 2
linear layers, each followed by a batch normalization layer, a ReLU
non-linearity and a dropout and in the end a final linear layer with
1 output that gives the logit which will be used for the binary pre-
diction. This logit is then passed through a sigmoid function which
gives a probability value in the range of [0,1]. If this value is over
0.5 we predict that a TSS is present in the sequence, if it’s under 0.5
we predict TSS absence. The linear layers manage to combine the
features and patterns extracted by the previous convolutional layers
in order to make accurate predictions.

To train our model we use the Adam optimizer and Binary Cross

Entropy loss, as we have a binary prediction task. The sizes of the
2 linear layers and the probability of dropout for all dropout layers
were tested as hyperparameters for the model and out of the tests the
better performing ones were chosen. The final architecture we end
up with isn’t particularly heavy or complex and performs well on the
task of binary prediction of TSS.

2.3.2. Cofactor-Promoter Motif Model Construction

In the second stage of our research, we developed a deep neural
network architecture with the objective of predicting the expression
values of various COFs given a DNA sequence of length 134. Our
dataset initially comprised expression data for 14 COFs (exclud-
ing GFP) associated with each sequence. However, considering
the insights from Haberle et al., who demonstrated that promoter
sequences exhibit clustering behavior based on the occurrence of
known Cofactor Protein motifs, we opted to focus on one COF per
cluster[12]. This decision was motivated by the practicality and
interpretability of the results. Notably, the clustering analysis re-
vealed that the promoter sequences fall into five distinct groups, each
characterized by a different motif occurrence profile. For instance,
Group 1 displayed a strong enrichment of the TATA box motif. As
a result, our model was designed to predict the expression levels of
five specific COFs: p65, p300, gfzf, chro, and mof. These chosen
COFs represent one COF from each cluster. Therefore, our model
effectively maps the 134-base pair sequence to five expression val-
ues corresponding to the selected COFs. This approach allows us to
gain insights into the specific COFs’ involvement in the transcrip-
tional response of promoters upon COF binding.

Our implementation was again based on DeepSTARR as its
convolutional approach fitted well with our objective of predicting
the promoter activity based purely on DNA sequences. Again, we
implemented our entire architecture in PyTorch. This architecture
was more easily adjusted as our task was a regression of 5 values for
each sequence, very similar to DeepSTARR’s regression of 2 values
(housekeeping and developmental enhancer activity)[12].

The architecture used is exactly the same as the one described
above for the first task with the difference that instead of having
one final linear layer with output of size 1, we have five final linear
layers with output of size 1 as we now have a regression task of
5 values (expressions of 5 COFs) and not a binary classification.
Additionally, we get rid of the Sigmoid layer as we don’t want to
apply any activation function on the outputs of our network. We use
five output linear layers of output size 1 instead of one output linear
layer of output size 5 to get the COF expression values as it gives
the same results and it better suits the interpretability methods we
will use for our model.

For this task it could possibly be beneficial to use different sizes
of kernels and filters for the convolutional and max-pooling layers
compared to the initial DeepSTARR since our input sequence is now
of size 134 instead of 249 bps but this fine- tuning was out of the
scope of the current project so we decided to move forward with the
same values as DeepSTARR.

The model construction and training process utilized specific hy-
perparameters that were carefully selected to optimize performance.
The batch size, which determines the number of examples processed
in each iteration, was set to 128. The model was trained for 15
epochs, representing the number of complete passes through the



training dataset. A learning rate of 0.002 was employed, controlling
the step size at which the model learns from the data. The convo-
lutional layers employed different numbers of filters, with 256, 60,
60, and 120 filters in the respective layers. Additionally, the sizes
of the filters were set to 7, 3, 5, and 3 for the corresponding layers.
The model consisted of a single dense layer, with 256 neurons in
each layer. To prevent overfitting, a dropout probability of 0.3 was
applied. These hyperparameters were chosen through experimenta-
tion and tuning to optimize the model’s performance in accurately
predicting the desired outcomes.

To train our model we use the Adam optimizer and Mean
Squared Error loss, as we now have a regression task. The loss
function which is back-propagated through the network is calculated
as the mean of all of the losses between the target values and the
predicted values for all 5 COFs.

2.4. Model Interpretation

In the last part of the project, we wanted to interpret the models, in
order to uncover promoter motifs needed for the prediction of the
promoters’ transcriptional response to the different COFs. Thus, We
decided to unveil the promoter-COFs specifities by the underlying
sequence patterns as this model is the one that could give us the
most interesting and novel biological knowledge. The general idea
of our approach and goal is: a) Gather the sequences that have high
expression scores for a COF, b) Using an interpretation method,
define at nucleotide level which parts of the input sequences are
the most important for the network when predicting the final output
value of the expression for that COF, c)find motif occurrences with
the subset of sequences and extract nucleotide contribution scores
for these motif occurrences, d) identify which promoter motifs are
present when each COF is able to strongly induce transcription.
Among other very important biological knowledge, with these steps
we can even get results about promoter motif and COF specificity in
a fully computational approach.

The details about our interpretation method are described below:
We are doing the model interpretation after training it on the regres-
sion task for the 5 COFs(p65, p300, gfzf, chro, and mof). We are
using sequences from the validation set in order to do the interpreta-
tion.

For simplicity, we explain the method steps for one of the COFs
in detail, but we apply the same method for all 5 COFs.

• Pick all the different sequences from the validation set that
have a corresponding expression value of the COF which ex-
ceeds a threshold (threshold = 1)

• Feed these sequences to the trained model, getting the corre-
sponding predictions for the COF expression

• Use the IntegratedGradients algorithm to calculate how each
nucleotide in the input sequence contributes to the output
value of the COF expression

• Load an R object provided to us by the IMP that contains 19
PWMs with known promoter motifs

• Find the location of these known motifs(TATA box, Ohler1...)
in our sequence and compare with the calculated nucleotide
contribution scores for the same location in the sequence

2.4.1. Pearson correlation coefficient (PCC)

In order to assess our model’s prediction quality for the cofactor ex-
pressions, one of the main metrics examined during the study was
the Pearson correlation coefficient (PCC). The main reason behind
choosing PCC among the different types of correlation coefficients
was that it provides a sense of linear correlation between two data
sets. The correlation coefficient can be derived for two sets of se-
quential data (x and y) as follows shows in eq. 4.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4)

The coefficient, rxy , takes a value between -1 and 1, depending
on the type of correlation. Negative values indicate an inverse pro-
portionality, and vice versa, where the magnitude of the correlation
gives a clue about the significance of the correlation. According to a
rule of thumb scale, (Table 1.) provided by Hinkle et al.[18], the ob-
tained magnitudes can be interpreted based on 5 levels of correlation
between negligible correlation and very high correlation.

Size of Correlation Interpretation
.90 to 1.00 (-.90 to -1.00) Very high positive (negative) correlation
.70 to .90 (-.70 to -.90) High positive (negative) correlation
.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation
.30 to .50 (-.30 to -.50) Low positive (negative) correlation
.00 to .30 (.00 to -.30) negligible correlation

Table 1: Pearson Correlation Coefficient significance scale suggested by Hinkle et
al.[18].



3. RESULTS

3.1. Binary Prediction of TSSs

(a) (b)

(c) (d)

Fig. 4: Model Evaluation and Training Performance. This figure presents multiple subplots assessing the performance and training progress of the model. (a) The upper-left subplot
depicts the training and validation loss curves over epochs, providing insights into the convergence of the model. (b) The upper-right subplot showcases the Receiver Operating
Characteristic (ROC) curve, illustrating the trade-off between true positive rate and false positive rate and quantifying the model’s discriminatory power. (c) The lower-left subplot
displays the Confusion Matrix, highlighting the classification accuracy and the distribution of true positive, true negative, false positive, and false negative predictions. (d) The lower-
right subplot exhibits the density plot comparing the distribution of false positives and false negatives. The combined figure offers a comprehensive analysis of model performance,
training progression, and diagnostic metrics, contributing to the understanding and assessment of the developed model.

Examining fig. 4, the performance evaluation of our developed model yielded promising results, as shown in Figure 4. Figure 4a depicting
the training and validation loss curves demonstrated convergence, with a validation loss of 0.475 and a training loss of 0.425. Early stopping
suggested 15 epochs as the optimal point, indicating that the model neither overfits nor underfits the data. Figure 4b displayed the ROC curve,
with an AUC of 0.844. This value indicates a reasonably good discriminatory power of the model in distinguishing between true positive
and false positive predictions. Moving to Figure 4c, the confusion matrix showcased an overall accuracy of 0.785. Specifically, it revealed
3311 true negatives, 712 false positives, 590 false negatives, and 1441 true positives, providing insight into the model’s ability to correctly
identify negative and positive instances. Lastly, Figure 4d presented the density plot comparing the distribution of false positives and false
negatives. The plot revealed that the model successfully predicted both negative sequences and positive sequences. However, there was a
slight tendency to predict non-TSS sequences (false positives) more frequently than sequences with TSS (false negatives). Collectively, these
results demonstrate the effectiveness of our model in predicting the presence of TSSs and provide valuable insights into its performance and
predictive tendencies.



3.2. Cofactor-Promoter Motif Specificity Prediction

[]

(a) (b)

(c) (d)

(e)

Fig. 5: Real expression values vs. predicted expression values for (a) p65, (b) Nej p300, (c) gfzf, (d) Chro, and (e) Mof.

The 5 plots included in Figure 5. provide a good basis to compare the predicted expression values by the model to the ones in the test
set. These smooth scatter plots are obtained by converting basic scatter plots of predicted and real values to more interpretable, heatmap-like
representations, where the density of observations is indicated by tones of red (a deep red region includes a high number of observations, and
lighter red parts include a smaller number of observations). They are also used due to the excessive number of samples (7144 observations) to
avoid stacked observations. In the best scenario, one would expect the predictions to be same as the real values, thus, drawing a simple x = y
line (dashed lines) is a good way to check the tendencies of model for each cofactor. The overall performance of the model can be checked
by interpreting the deviations and spreading behavior of red regions, the deepest ones being in the first place, from the target (x = y in this
case).



3.3. Biological Interpretation of Cofactor-Promoter Motif Specificity

[]

(a) (b)

(c) (d)

(e)

Fig. 6: Contribution scores of promoter Motifs found in the input test sequences. These values are extracted with an interpretation algorithm for the test sequences from trained model
weights for (a) p65, (b) Nej p300, (c) gfzf, (d) Chro, and (e) Mof.



4. DISCUSSION

According to Figure 4, the binary TSS prediction model demon-
strates the ability to distinguish DNA sequences based on the pres-
ence or absence of TSS. This is supported by the reliable perfor-
mance indicated by the confusion matrix (Figure 4c). However, upon
closer examination of the confusion matrix (Figure 4c) and the den-
sity distribution (Figure 4d), a noticeable trend emerges. The model
exhibits a higher proficiency in predicting non-TSS sequences com-
pared to sequences containing TSS. This bias may be attributed to
the uneven distribution of data and limitations faced during training.
Additionally, the density plot reveals instances where the model’s
predictions display a degree of uncertainty, as evidenced by the
prediction certainty between 0.2 and 0.8. To address these limita-
tions, several suggestions can be considered. Pretrained language
models have proven their effectiveness in various biological appli-
cations. Reddy et al. (2023) have reviewed strategies for predicting
promoter-driven gene expression using language models[19]. For
example, the state-of-the-art TSSNote-CyaPromBERT, trained on
the human genome, could be utilized for transfer learning to ini-
tialize our model weights and improve predictions[20]. Further
experiments can be hold to compare the models.

On the other hand,upon analyzing the results of the cofactor
prediction model and mapping the obtained coefficients to cor-
responding intervals, it becomes evident that the model exhibits
predictive capability for the cofactors p65 and Nej p300, displaying
a high degree of correlation with the target values. Furthermore, the
model demonstrates the ability to provide outputs for each cofactor
of interest, albeit to a moderate extent of linear relationship.

To double check the significance of the linear relation between
target expression values and predicted expression values, a conve-
nient further check would be their scatter plots. The plots in Figure
5. depict to what extent the predicted values fit the real ones.

Cofactor PCC
p65 0.795
Nej p300 0.794
gfzf 0.530
Chro 0.583
Mof 0.639

Table 2: Pearson Correlation Coefficient of predicted and real expression values of
cofactors of interest.

The highly linear relationship for Nej p300 and p65 is quite ob-
vious in the plots. The slight misfit to the regression line in the plots
of gfzf and Chro can also be seen, when compared to Nej p300 and
p65, even a tiny non-linearity for gfzf can be in question. When it
comes to Mof, the regression line seems to be fitting perfectly to the
most dense area of the observations, yet relatively a small number of
predicted values prevent its correlation coefficient to be higher than
0.7 due to their high deviation from real values.

Observing the predicted interpretation box plots of our best
trained model on the test set provided in Fig. 6for each of the 5
COFs and comparing them to the experimental results for the 5
COFs provided by Fig. 7 we observe that our model almost accu-
rately predicts the found experimental results regarding cofactor-
motif specificity. For COFs that our model achieves higher PCC

Fig. 7: The plot is obtained from Haberla et al. 2019’s publication [12]. Different
core promoter (CP) groups, which are preferentially activated by distinct transcriptional
cofactors (COFs), exhibit diverse CP motifs. The presence of established CP motifs
specific to Drosophila CPs is observed within five different groups based on their re-
sponsiveness to COFs in STAP-seq (Extended Data Fig. 6). Within each group, CPs are
arranged in descending order of STAP-seq tag count for the most potent corresponding
COFs (on the left). Additionally, the occurrence of TCT is highlighted in the top 10%
of CPs belonging to group 4 (inset).

values and thus better prediction ability we see that the specificity
is even more apparent. We believe that this finding in a fully com-
putational way is a very important contribution of our work as to
our knowledge it hasn’t been formulated before. For example, for
the p65 COF we observe that the median of the contribution score
values in the boxplot for the TATA Box and INR motif are the high-
est, something also observed in the experimental data. This suggests
that this specific cofactor displays specificity for these two distinct
types of core promoters. Also it indicates that it can possibly be
used to predict the responsiveness of different COFs on yet untested
sequences.

5. CONCLUSION

In conclusion, this research paper focuses on two primary compo-
nents: the prediction of TSSs along Drosophila genomes using DNA
sequence, and the prediction of promoters’ transcriptional response
to COF binding, revealing the relationship between promoter motifs
and COFs. The paper describes the data preprocessing steps for both
tasks, including the extraction of DNA sequences, the creation of
negative control sequences, and the normalization of COF expres-
sion levels.

For the TSS binary prediction task, a deep neural network archi-
tecture based on DeepSTARR is implemented. The model consists
of convolutional layers for feature extraction and linear layers for
classification, using a sigmoid function to predict TSS presence or
absence. The model is trained using the Adam optimizer and Binary
Cross Entropy loss.

For the COF-promoter motif prediction task, a similar deep
neural network architecture based on DeepSTARR is employed, but
with five final linear layers for regression of the expression values of
specific COFs. The model is trained using the Adam optimizer and
Mean Squared Error loss.

To interpret the models and uncover promoter motifs related to
COF binding, an interpretation method is applied. It involves select-
ing sequences with high expression scores for a COF, calculating
nucleotide contribution scores using the IntegratedGradients algo-
rithm, and comparing known promoter motifs with the calculated
scores to identify motif occurrences and their contributions to COF
expression.



The models’ performance is evaluated using metrics such as
Pearson correlation coefficient (PCC), training and validation loss
curves, ROC curve, confusion matrix, and density plots. The TSS
binary prediction model demonstrates the ability to distinguish se-
quences based on TSS presence or absence, although it shows a bias
towards predicting non-TSS sequences. The COF-promoter motif
prediction model exhibits a moderate linear relationship with the ex-
pression values of specific COFs, with higher correlations observed
for p65 and Nej p300. Finally, the COF model seems to be able to
learn important biological knowledge, which to our knowledge has
been found previously only in experiments regarding COF-Promoter
Motif specificity.[12]. This suggests that it can possibly be used to
predict the responsiveness of different COFs on yet untested se-
quences.

Overall, this research paper presents a comprehensive approach
to predict TSSs and investigate the relationship between promoter
motifs and COFs. The developed models show promising predictive
performance and provide valuable biological insights into transcrip-
tional regulation in Drosophila genomes. Future work could explore
transfer learning from pretrained language models and further exper-
iments to improve the models’ predictions. Additionally, the model’s
performance on predicting more COFs could be tested.
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Appendix
Source Code
Please find the source code on GitHub: GitHub Repository

Plots

Fig. 8: Distribution of COF Values. The histogram plot showcases the distribution
of values for each COF column based on the given cofactor expression data. Each
histogram represents the frequency distribution of values, with the x-axis indicating the
values and the y-axis representing the frequency of occurrence. The plot provides an
overview of the distribution patterns and the range of values for each COF, contributing
to the analysis of their expression levels.

Fig. 9: Distribution of COF Values with KDE Scatter. The plot showcases the distri-
bution of values for each COF column based on on the given cofactor expression data.
Each COF’s distribution is represented by a combination of histogram and KDE (Kernel
Density Estimate) scatter plot. The histogram depicts the density of values along the
x-axis, while the KDE scatter plot provides an estimate of the underlying probability
density function. The plot offers insights into the distribution patterns and the relative
density of values for each COF, facilitating the analysis of their expression levels and
variability.

Fig. 10: Distribution of COF Values with Threshold. The plot presents the distribution
of values for each COF column based on on the given cofactor expression data. The
upper subplot displays the density of values using histograms and KDE (Kernel Density
Estimate) scatter plots. The lower subplot highlights values exceeding the threshold
of 3, providing a focused view of the distribution for those values. The shared x-axis
allows for direct comparison between the overall distribution and the subset of values
above the threshold. The plot aids in the assessment of the distribution patterns and the
relative density of COF values, assisting in the analysis of their expression levels and
the identification of high-value instances

https://github.com/UgurDURA/promoter_sequence_identification
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